The Crystal Structure of Decanamide

BY J. R. BRATHOVDE AND E. C. LINGAFELTER

Department of Chemistry, University of Washington, Seattle 5, Washington, U.S.A.

(Received 29 August 1956 and in revised form 25 February 1958)

The crystal structure of decanamide, $CH_3(CH_2)_8CONH_2$, has been determined by two-dimensional projections. Individual atom anisotropic temperature factors have been included and the final values of R are $R_{hol} = 0.091$ and $R_{0kl} = 0.097$. The structure is quite similar to that of tetra-decanamide.

Introduction

As a continuation of the study of the *n*-aliphatic amides (Turner & Lingafelter, 1955*a*, *b*), the crystal structure of decanamide, $CH_3(CH_2)_8CONH_2$, has been determined by two-dimensional projections. The diffraction pattern of decanamide differs from that of tetradecanamide (Turner & Lingafelter, 1955*b*) in that the (200) reflection is the center one of the three intense spots in the (201) row rather than an outside one (Turner & Lingafelter, 1955*a*). Furthermore, our treatment of the data differs in that, for decanamide, we have used McWeeny scattering factors, have included the contributions of the hydrogen atoms, and have introduced individual anisotropic temperature factors for the *h*0*l* zone, thus giving much more complete refinement.

Experimental

Decanamide crystallizes by evaporation of the solvent from *n*-butyl acetate solutions at room temperature in thin monoclinic tablets with prominent (001) faces. One lath-like crystal, elongated in the **b** direction $(0\cdot12 \times 0\cdot16 \times 3\cdot0$ mm.), was found in a batch of crystals grown by Turner (Turner & Lingafelter, 1955a). This crystal was used for all photographs taken with rotation about **b**. Another large crystal $(0\cdot5 \times 10 \times 10$ mm.), grown by very slow (30 days) evaporation, was made into a cylindrical rod $(0\cdot14 \times 2\cdot0$ mm.) elongated in the **a** direction, by cutting it to size and dipping it repeatedly into the solvent. This crystal was used to obtain (0kl) data.

Interpretation of equi-inclination Weissenberg photographs taken with copper radiation ($\lambda = 1.5418$ Å) gave the following results:

$$a_0 = 9.830 \pm 0.013, b_0 = 5.555 \pm 0.003, c_0 = 21.224 \pm 0.033 \text{ Å}, \ \beta = 103^{\circ} 27' \pm 6'.$$

(h0l) absent for h odd, (0k0) absent for k odd; probable space group: $P2_1/a-C_{2h}^5$.

Number of molecules per cell = 4. Density, calc. 1.010 g.cm.⁻³, obs. 1.006 g.cm.⁻³ (Turner & Lingafelter, 1955a).

Photographs for intensity measurement were prepared and photometered as previously described (Turner & Lingafelter, 1955b) but the area under the photometer tracing for each reflection was determined with a linear-to-log converter and integrator (Brathovde & Breazeale, 1955) and this area was taken to be equal to the relative intensity. The precision of the determination of intensities was found to be 4.5% for 94 reflections which appeared on more than one film.

177 (h0l) and 97 (0kl) reflections out of a possible 218 and 146, respectively, were measured, giving a range of 1 to 12000 in relative intensity. Lorentz and polarization factors were applied, but no correction was made for absorption.

Structure factors were calculated using McWeeny scattering factors (McWeeny, 1951) and, for the h0lzone, individual anisotropic temperature factors in the form $\exp \left[-(A_i+C_i\cos^2\varphi_i)\sin^2\theta/\lambda^2\right]$, where A_i and C_i are characteristic of the atom and φ_i is the angle between the direction of maximum vibration and the normal to the reflection plane. For the 0kl zone, because of the uncertainties due to lack of resolution, individual isotropic temperature factors were used. The final values of the temperature-factor parameters are given in Table 1.

Table 1. Temperature factor parameters

	h	01	
		<u> </u>	0kl
Atom	A_i	C_i	B_{i}
N	$2 \cdot 2$	1.8	4 ·0
0	1.5	$2 \cdot 9$	4.4
C_1	$2 \cdot 4$	$1 \cdot 2$	3.6
C_2	$2 \cdot 6$	$1 \cdot 2$	3.8
C_3	$3 \cdot 0$	1.0	4 ·0
C_4	$3 \cdot 6$	0	$3 \cdot 6$
C_5	$3 \cdot 6$	0	3.6
C_6	$3 \cdot 8$	0	$3 \cdot 8$
C ₇	4.8	0	4 ·8
C ₈	5.4	0	5.4
$\tilde{C_9}$	5.8	1.5	6.0
$\tilde{C_{10}}$	7.5	1.1	7.6

All atoms have direction of maximum vibration parallel to c^* except C_9 and C_{10} , for which it is 70° from c^* .

In all cases each hydrogen atom was given a temperature factor equal to that of the carbon or nitrogen atom to which it is attached. The calculations were carried out on the IBM Type-604 Calculator. Refinements of atomic positions were made from differential difference syntheses (Cochran & Lipson, 1953) calculated on the 604. Refinements of temperature factors were made from difference syntheses calculated on the 604 and the IBM Type-407 Tabulator. The final set of F's, given in Table 3, were calculated on the IBM Type-650.

Determination of the structure

Trial structures for both projections (i.e., on (100) and on (010)) were assumed by analogy with the structure of tetradecanamide, and the two projections were refined completely independently.

For the projection on (010), in which all atoms are resolved, hydrogen atom contributions were included at R = 0.252, where $R = \Sigma ||F_o| - |F_c|| \div \Sigma |F_o|$, omitting unobserved terms; the hydrogen atom positions were not further refined, but were recalculated after the last refinement and before the calculation of the final set of F's. In calculating the hydrogen atom positions, C-H was taken as 1.075 Å and N-H as 1.005 Å. Individual atomic anisotropic temperature factors were introduced at R = 0.202. From this point the refinement proceeded by alternate use of differential difference and difference syntheses. This procedure reduced R to a final value of 0.107. Fig. 1 shows clearly the necessity for individual temperature factors by the progressive broadening and lowering of the electron-density peaks away from the amide end of the molecule. Fig. 2, a difference synthesis calculated with isotropic temperature factors, shows the anisotropy which necessitates the use of anisotropic temperature factors.

While the individual anisotropic temperature factors are clearly necessary to give good agreement between calculated and observed structure factors, we have not, as yet, determined how much difference, if any, their use may make in the final atomic positions.

Owing to the crossed-chain arrangement (Turner & Lingafelter, 1955b) in the projection on (100), only 6 of the 12 heavy atoms (C, N, and O) are resolved. This makes both positions and temperature factors more difficult to determine and of lower accuracy because of the mutual interaction of the several effects. This projection was refined by essentially the same procedure as for the previous projection, giving a final value of R = 0.089.

At this point the two projections were compared and a weighted average set of final parameters and temperature factors was calculated. These final parameters, which give $R_{h0l} = 0.091$ and $R_{0kl} = 0.097$ are listed in Table 2. The complete list of observed and calculated structure factors is given in Table 3.

Fig. 1. Electron-density projection on (010). Contours at $1 e. A^{-2}$. Zero contour and $1 e. A^{-2}$ contours omitted.

Fig. 2. Difference synthesis projection on (010). Contours at $\frac{1}{4}$ e.Å⁻². Negative contours broken.

J. R. BRATHOVDE AND E. C. LINGAFELTER

Table 2. The atomic coordinates and their standard deviations

Nitrogen, oxygen and carbon atoms										Hydrog	en atoms	;		
Atom	x/a	y/b	z/c	$\sigma(x)$ Å	$\sigma(y)$ Å	$\sigma(z)$ Å	Atom	x/a	y/b	z/c	Atom	x/a	y/b	z/c
N_{11}	0.1711	0.1460	0.0375	0.0045	0.008	0.0051	H ₁₃	0.125	0.017	0.007	H_{24}	0.200	0.001	0.313
$0_{12}^{}$	-0.0380	0.2243	0.0507	0.0035	0.008	0.0048	H14	0.272	0.191	0.042	H_{25}^{22}	-0.027	0.375	0.271
$C_1^{}$	0.0917	0.2827	0.0645	0.0047	0.010	0.0055	H ₁₅	0.217	0.588	0.084	H_{26}	-0.029	0.143	0.327
$\overline{C_2}$	0.1639	0.4682	0.1096	0.0057	0.010	0.0062	H ₁₆	0.239	0.382	0.148	H_{27}	0.188	0.537	0.343
$\overline{C_3}$	0.0663	0.6095	0.1384	0.0060	0.010	0.0058	H ₁₇	0.000	0.714	0.101	H_{28}^{-1}	0.182	0.307	0.399
C_4	0.1481	0.7801	0.1913	0.0067	0.010	0.0061	H ₁₈	0.004	0.489	0.160	H_{29}	-0.042	0.681	0.356
C_5	0.0530	0.9471	0.2223	0.0066	0.010	0.0059	H_{19}	0.212	0.892	0.170	H_{30}	-0.040	0.458	0.414
C_6	0.1346	0.1110	0.2760	0.0067	0.012	0.0062	H ₂₀	0.211	0.672	0.229	H_{31}	0.174	0.855	0.423
C_7	0.0369	0.2619	0.3075	0.0087	0.017	0.0079	H_{21}	-0.008	0.058	0.185	H_{32}	0.176	0.632	0.482
C_8	0.1203	$0\ 4208$	0.3624	0.0131	0.017	0.0090	H_{22}	-0.012	0.835	0.243	H_{33}	0.042	0.848	0.466
C ₉	0.0237	0.5737	0.3925	0.0143	0.017	0.0100	H_{23}	0.199	0.231	0.256				
C_{10}	0.1100	0.7397	0.4446	0.0218	0.025	0.0127								

Table 3. Observed and calculated structure factors

Values are multiplied by 10

											-	•								
<u>hk 1</u>	Yobs	Pcalo	<u>hk 1</u>	Pobs.	P _{calc} .	<u>hk 1</u>	Fobs.	F _{calc} .	<u>hk 1</u>	P _{obs} .	Fcalc.	<u>hk 1</u>	Fobs.	P _{calc} .	<u>hk 1</u>	F _{obs} .	P _{calc} .	<u>hk 1</u>	Pobs.	Fcalo.
00 0		3840	40 7	129	116	100 5	39	41	4017	100	112	8017	٥٥	-22	02 6	<20	16	0410	59	54
00 1	567	532	40 8	90	86	100 6	30	30	4018	100	96	8018	00	-25	02 7	59	72	0411	00	-7
00 2	<10	-3	40 9	60	12	100 7	<20	27	4 019	60	74	8019	30	-37	02 8	521	531	0412	00	6
00 3	309	309	4010	00	11	100 8	<20	19	T 020	70	70	8020	39	-39	02 9	197	218	0413	00	26
00 4	160	-143	4011	139	-146	120 0	<10	-3	4021	3 0	-3	8021	<20	-36	0210	176	173	0414	30	-33
0 0 5	70	59	4012	229	227	120 1	10	70	¥ 022	60	-46	8022	30	-40	0211	59	74	0415	30	-10
00 6	258	-251	4013	199	194	120 2	10	62	4 023	109	109	8023	30	-55	0212	69	64	0416	59	85
00 7	170	-156	4014	139	-157	201	1095	1126	¥024	70	83	100 1	90	-75	0213	<20	35	0417	49	58
00 8	289	-274	4015	119	-106	20 2	60	43	БО 1	60	40	100 5	100	-100	0214	<30	30	0418	30	25
0 0 9	249	-255	4016	100	-103	203	498	521	Б0 2	39	-21	100 3	90	-91	0215	49	-48	0419	30	32
0010	199	-195	4017	39	-62	20 4	90	-102	БО 3	80	-70	100 4	90	-94	0216	157	-143	0420	49	37
0011	189	-200	4018	30	-43	205	199	195	БО 4	129	-113	100 5	60	-80	0217	00	-13	0421	20	-15
0012	398	-375	4019	<30	-25	206	149	-151	БО 5	139	-142	100 6	60	-70	0218	30	47	05 1	00	8
0013	100	-111	60 0	139	150	207	<20	-32	БО б	129	-121	100 7	49	-55	0219	00	6	05 2	39	-21
0014	30	-21	60 1	90	81	208	160	-152	БО 7	90	-106	100 8	00	-26	0250	30	-58	05 3	69	-58
0015	<60	-7	60 2	70	38	209	70	-78	508	49	-53	100 9	90	-67	03 1	30	46	05 4	98	94
0016	60	45	60 3	170	183	2010	80	-93	БО 9	60	-79	10010	109	-96	03 2	107	113	05 5	49	51
0017	00	27	60 4	170	138	2011	139	-117	б010	309	332	10011	60	59	033	79	102	05 6	49	64
0018	49	61	60 5 (a (170	162	2012	49	40	Б 011	139	140	10012	129	120	03 4	148	163	05 7	- 20	15
0019	00	29	60 6	129	103	2013	39	45	6012	249	-255	10013	90	89	03 5	79	87	05.8	00	15
0020	-30 -30	30	60 7	90	96	2014	70	69	5013	109	-81	10014	90	91	036	118	117	05.9	<00 70	10
0021	20	14 65	60.0	60	41	2015	60	58	6014	80	-62	10015	70	68	03 7	20	19	0510	29	21
0022	~30	-3	6010	200	7	2016	90	79	6015 Teac	39	-17	10016	60	62	038	59	65	0511	200	20
0024	60	-78	6011	-30	-91	2017	59 70	56	6016 Tong	<i>2</i> 30	1	01 1	157	-144	039	<59	-29	0512	30	22
								00	0011	00	,	01 2	•9	-01	0310	29	05	- ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
20 0	707	711	6012	60	65	3010	-	-	Fore									0514	30	•
20 1	1165	-1224	6013	160	-170	2019	00	36	5010	00	18	01 3	216	-206	0311	59	-50	0515	30	37
20 2	209	-198	6014	200	-213	2020	39 170	24	Foro	00	,	01 4	1278	-1323	0312	364	-340	0516	30	28
20 3	160	-157	6015		-87	7021	00	- >>	5020	00	20	015	452	-445	0313	30	-51	0517	30	_33
20 4	90	-86	6016	49	-61	2022	200	>> ~~	5022	20	10	01.6	295	-288	0314	30	8	0518	20	
20 5	100	-106	80 O	109	-76	2025	80	95	5022	<20	-70	01 7	255	-271	0315	<30	-13	06 0	79	-78
20 6	109	-104	80 1	199	-205	2025	80	-107	T025	60	-50	01 0	202	- 207	0316	30	9	06 1	(20	18
20 7	139	-129	80 2	39	-22	2026	39	-53	5025	30	32	01 9	29 70	-19	0317	200	0	06 2	<20	32
20 8	119	-111	80 3	109	106	4 0 1	(20	18	80 1	60	-65	0111	19	116	0518	<00 100	18	06 3	30	-7
20 9	160	-163	80 4	60	59	40 2	229	-214	80 2	90	-90	0112	108	40	0319	<20	14	06 4	<20	12
2010	49	-57	80 5	70	78	4 0 3	149	-125	80 3	90	-82	0113	70	121	0320	<20	18	06 5	<20	-1
2011	328	-328	80 6	60	49	 то 	299	-279	80 ¥	100	-90	0114	80	90	0321	<20	21	06 6	(20	h
2012	189	-194	80 7	39	48	T 05	209	-211	80 5	90	-77	0115	40	97 67	0322	<20	-21	06 7	<20	7
2013	289	282	80 8	3 0	6	4 0 6	249	-226	80.6	70	-61	0116	129	07	0325	<20	12	06.8	30	15
2014	109	82	80 9	(3 0	-3	T O 7	180	105	80 7	<i>3</i> 0	-34	0117	170	147	0524	49	64	06 9	30	20
2015	60	58	8010	3 0	-15	T O 8	170 .	-77	8 08	630	2	0118	29	50	04 0	69	75	0610	(20	20
2016	30	35	8011	30	-3	4 0 9	160	130	80 9	80	-79	0110	49	51	04 1	30	42	0611	<20	_1
40 0	209	-195	8012	39	-32	4 010	70	62	8010	149	128	0120	20	-9	04 2	49	39	0612	20	16
40 1	49	-18	8013	80	-69	4 011	348 -		8011	379	403	02.0	79	-84	04 3	<20	-17	07 1	<10	10
40 2	189	148	100 0	139 .	-112	4 012	219	206	8012	199	174	02 1	227	-219	04 4	<30	4	07.2	<10	-20
40 3	209	209	100 1	<i>C</i> 00	-42	म013	90	-63	8013	70	91	02.2	201	-1991	04 5	39	-21	07 3	20	
40 4	219	206	100 2	160	165	4 014	70	75	8014	70	70	02 3	157	-201	04 0	49	-37	07 4	20	20
40 5	209	202	100 3	139	111	 4015	109	117	8015	30	25	02 4	314	-170	047	89	-98			20
40 6	180	172	100 4	39	35	¥016	119	117	8016	39	17	02.5	70	-290	018	186	-162			
								•		~*		V2 3	19	05	04 9	59	55			

Discussion

The structure of decanamide does not differ appreciably from that of tetradecanamide except for the length of the c axis and the details of the packing of the methyl groups, both caused by the difference of chain length. Table 4 compares the two structures quantitatively.

Table 4. Comparison of decanamide and tetradecanamide

Values in the table are coordinates of atoms on the orthogonal set of axes a, b, and c^*

	\boldsymbol{x}	(Å)	y	(Å)	z (Å)			
		C ₁₄	C ₁₀	C ₁₄	C ₁₀	C ₁₄		
Ν	1.4968	1.4891	0.8112	0.8184	0.7741	0.8025		
0	-0.6238	-0.6208	1.2462	1.3871	1.0466	1.0616		
C_1	0.5830	0.5572	1.5707	1.5498	1.3314	1.3374		
C,	1.0700	1.0683	2.6013	2.5588	2.2624	2.2765		
C,	-0.0315	-0.0368	3.3864	3.3710	2.8568	2.8700		
C₄ _	0.5114	0.4903	4.3009	4.3537	3.9488	3.9707		
C_5	-0.5764	-0.5964	5.2621	5.2747	4.5887	4.5781		
C ₆	0.0394	-0.0768	6.1727	6.1217	5.6971	5.7205		
Č,	-1.1553	-1.1710	7.0589	6.9883	6.3474	6.3558		
C.	-0.6066	-0.6470	7.8940	7.8941	7.4806	7.4816		
C.	-1.7047	-1.7432	8.7435	8.7472	8.1019	8.1168		
C10	-1.1136	-1.2124	9.6658	9.6110	9.1774	9.2759		
C11	_	-2.3078		10.4855		9.9363		
C_{12}^{11}	—	-1.8293	_	11.3010	—	11.0537		
C_{13}		-2.8844		$12 \cdot 1098$	—	11.7698		
C_{14}	—	-2.3474	_	13.0078		12.8704		

The bond distances and angles for decanamide are listed in Table 5, along with the standard deviations

Table 5. Bond lengths and standard deviations, and bond angles

Bond lengths

d	(Å)	σ (Å)
$C_1 - C_2$	1.472	0.010
$C_{2} - C_{3}$	1.478	0.010
$C_3 - C_4$	1.545	0.011
$C_4 - C_5$	1.566	0.011
$C_{5} - C_{6}$	1.532	0.011
$C_{6} - C_{7}$	1.540	0.014
C,-C	1.538	0.018
C _s -C	1.521	0.019
$C_{0} - C_{10}$	1.535	0.024
$N-C_1$	1.312	0.009
$O - C_1$	1.282	0.009
$N-H \cdots O$	2.88 (intradimer)	
N-H \cdots O	2.90 (interdimer)	

Bond angles

N-C ₁ -O	114·4°	$C_4 - C_5 - C_6$	113·9°
$N-C_1-C_2$	116.3	$C_{5} - C_{6} - C_{7}$	112.0
$O - C_1 - C_2$	129.0	$C_{6} - C_{7} - C_{8}$	111.4
$C_1 - C_2 - C_3$	112.3	$C_7 - C_8 - C_9$	111.3
$C_2 - C_3 - C_4$	110.4	$C_8 - C_9 - C_{10}$	110.1
$C_{3} - C_{4} - C_{5}$	114.1		

calculated by the method of Cruickshank (1949). The curvatures used in the calculations were measured on the final Fourier maps. The curvatures of the carbon atoms range from $84 \text{ e.} \text{Å}^{-4}$ at the amide end of the paraffin chain to $18 \text{ e.} \text{Å}^{-4}$ at the methyl end. Owing to the difficulties arising from overlap of atoms in the projection on (100), we feel that the **y** coordinates are less accurate than indicated by σ .

The average C–C bond length (omitting C_1-C_2 and C_2-C_3) is 1.540 Å ($\sigma = 0.014$) which may be compared with the value of 1.534 Å reported by Shearer & Vand (1956) for *n*-hexatriacontane. The average C–C–C–bond angle is 111.9° ($\sigma = 45'$) (cf. 112° 1' for *n*-hexatriacontane). The N–H···O hydrogen bond distances are somewhat shorter than those found in tetradecanamide, but the two values for decanamide are essentially equal.

The shortening of the C_1-C_2 bond is not surprising, owing to the interaction with the amide group. However, we have no explanation for the shortness of the C_2-C_3 bond.

As another test, (0kl) structure factors were calculated for an assumed structure in which the **y** coordinates of those atoms which were unresolved in the projection were adjusted so as to give the best possible agreement of bond lengths with those generally quoted in the literature. This calculation gave R = 0.133.

From a comparison of the structures of tetradecanamide, decanamide, and pentanamide (Adamsky & Lingafelter, 1958), it does not appear to be possible to explain the methyl group packing, and therefore the values of β , without consideration of the positions of the hydrogen atoms. This must therefore await three-dimensional investigations.

This investigation was supported by the Office of Ordnance Research (U.S. Army) under Contract No. DA-04-200-ORD-236.

References

- ADAMSKY, R. A. & LINGAFELTER, E. C. (1958). (unpublished.)
- BRATHOVDE, J. R. & BREAZEALE, J. D. (1955). Rev. Sci. Instrum. 26, 892.
- COCHRAN, W. & LIPSON, H. (1953). The Determination of Crystal Structures. London: Bell.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 5, 644.
- MCWEENY, R. (1951). Acta Cryst. 4, 513.
- SHEARER, H. M. M. & VAND, V. (1956). Acta Cryst. 9, 379.
- TURNER, J. D. & LINGAFELTER, E. C. (1955a). Acta Cryst. 8, 549.
- TURNER, J. D. & LINGAFELTER, E. C. (1955b). Acta Cryst. 8, 551.